

Q.PEAK DUO BLK ML-G9+

365-385

ENDURING HIGH PERFORMANCE

BREAKING THE 20% EFFICIENCY BARRIER

Q.ANTUM DUO Z Technology with zero gap cell layout boosts module efficiency up to 20.6%.

INNOVATIVE ALL-WEATHER TECHNOLOGY

Optimal yields, whatever the weather with excellent low-light and temperature behavior.

ENDURING HIGH PERFORMANCE

Long-term yield security with Anti LID Technology, Anti PID Technology¹, Hot-Spot Protect and Traceable Quality Tra.Q™.

EXTREME WEATHER RATING

High-tech aluminum alloy frame, certified for high snow (6000 Pa) and wind loads (4000 Pa).

A RELIABLE INVESTMENT

Inclusive 25-year product warranty and 25-year linear performance warranty².

STATE OF THE ART MODULE TECHNOLOGY

Q.ANTUM DUO combines cutting edge cell separation and innovative 12-busbar design with Q.ANTUM Technology.

- ¹ APT test conditions according to IEC/TS 62804-1:2015, method B (-1500 V, 168 h)
- $^{2}\,\mbox{See}$ data sheet on rear for further information.

THE IDEAL SOLUTION FOR:

Rooftop arrays on residential buildings

ELECTRICAL CHARACTERISTICS

PO	WER CLASS			365	370	375	380	385
MIN	IIMUM PERFORMANCE AT STANDARD TEST (CONDITIC	NS, STC1 (PO	WER TOLERANCE +	5W/-0W)			
Minimum	Power at MPP¹	P _{MPP}	[W]	365	370	375	380	385
	Short Circuit Current ¹	I _{sc}	[A]	10.40	10.44	10.47	10.50	10.53
	Open Circuit Voltage ¹	Voc	[V]	44.93	44.97	45.01	45.04	45.08
	Current at MPP	I _{MPP}	[A]	9.87	9.92	9.98	10.04	10.10
	Voltage at MPP	V_{MPP}	[V]	36.99	37.28	37.57	37.85	38.13
	Efficiency ¹	η	[%]	≥19.3	≥19.5	≥19.8	≥20.1	≥20.3
MINIMUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT ²								
	Power at MPP	P _{MPP}	[W]	273.3	277.1	280.8	284.6	288.3
Minimum	Short Circuit Current	I _{sc}	[A]	8.38	8.41	8.43	8.46	8.48
	Open Circuit Voltage	Voc	[V]	42.37	42.41	42.44	42.48	42.51
	Current at MPP	I _{MPP}	[A]	7.76	7.81	7.86	7.91	7.96
	Voltage at MPP	V _{MPP}	[V]	35.23	35.48	35.72	35.96	36.20

 $^{1}\text{Measurement tolerances P}_{\text{MeP}} \pm 3\%; I_{\text{SC}}; V_{\text{CC}} \pm 5\% \text{ at STC}; 1000 \text{W/m}^{2}, 25 \pm 2\text{°C}, \text{AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM } 1.5 \text{ according to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum } \text{ AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{AM } 1.5 \text{ according } \text{ to IEC } 60904 - 3 \cdot ^{2}800 \text{W/m}^{2}, \text{AM } 1.5 \text{ according } \text{$

Q CELLS PERFORMANCE WARRANTY

At least 98% of nominal power during first year. Thereafter max. 0.5% degradation per year. At least 93.5% of nominal power up to 10 years. At least 86% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 $^{\circ}\text{C}, 1000\,\text{W/m}^2)$

TEMPERATURE COEFFICIENTS								
Temperature Coefficient of I _{SC}	α	[%/K]	+0.04	Temperature Coefficient of Voc	β	[%/K]	-0.27	
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.35	Nominal Module Operating Temperature	NMOT	[°F]	109±5.4 (43±3°C)	

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage V _{SYS}	[V]	1000 (IEC)/1000 (UL)	PV module classification	Class II	
Maximum Series Fuse Rating	[A DC]	20	Fire Rating based on ANSI / UL 61730	TYPE 2	
Max. Design Load, Push / Pull ³	[lbs/ft²]	84 (4000 Pa) / 55 (2660 Pa)	Permitted Module Temperature	-40°F up to +185°F	
Max. Test Load, Push / Pull ³	[lbs/ft²]	125 (6000 Pa) / 84 (4000 Pa)	on Continuous Duty	(-40°C up to +85°C)	
³ See Installation Manual			•		

QUALIFICATIONS AND CERTIFICATES

PACKAGING AND TRANSPORT INFORMATION

UL 61730, CE-compliant, IEC 61215:2016, IEC 61730:2016, U.S. Patent No. 9,893,215 (solar cells)

1890mm

42.5 in

1080 mm

1208 mm

661kg

pallets

pallets

24

modules

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use

Horizontal

packaging

Hanwha Q CELLS America Inc.